Keywords: large language models, patch-level training
TL;DR: This paper introduces patch-level training to reduce the number of text units for training LLMs, where every consecutive K tokens are aggregated into a patch unit.
Abstract: The prohibitive training costs of Large Language Models (LLMs) have emerged as a significant bottleneck in the development of next-generation LLMs. In this paper, we show that it is possible to significantly reduce the training costs of LLMs without sacrificing their performance. Specifically, we introduce patch-level training for LLMs, in which multiple tokens are aggregated into a unit of higher information density, referred to as a `patch', to serve as the fundamental text unit for training LLMs. During patch-level training, we feed the language model shorter sequences of patches and train it to predict the next patch, thereby processing the majority of the training data at a significantly reduced cost. Following this, the model continues token-level training on the remaining training data to align with the inference mode. Experiments on a diverse range of models (370M-2.7B parameters) demonstrate that patch-level training can reduce the overall training costs to 0.5$\times$, without compromising the model performance compared to token-level training.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 276
Loading