User-Dependent Learning to Debias for Recommendation

Published: 01 Jan 2023, Last Modified: 02 Aug 2024SIGIR 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In recommender systems (RSs), inverse propensity score (IPS) has been a key technique to mitigate popularity bias by decreasing the contribution of popular items in modeling user-item interactions. However, conventional IPS treats all users equally, which tends to over-debias the popularity-insensitive (PI) users and under-debias the popularity-sensitive (PS) users. Furthermore, in such a treatment, IPS only performs slightly well on the debiased test while does not work on the normal biased test. To this end, we propose a user-dependent IPS (UDIPS in short) method, which adaptively conducts propensity estimation for each user-item pair based on the user's sensitivity to item popularity. Like IPS, our theoretical analysis validates the unbiasedness of UDIPS. Remarkably, our solution is model-agnostic and can be easily used to upgrade current unbiased recommenders. We implemented it in four state-of-the-art models for unbiased recommendation, and experimental results on two benchmark datasets demonstrate the effectiveness of our method in both unbiased and normal biased test.
Loading