Optimal prediction of Markov chains with and without spectral gapDownload PDF

21 May 2021, 20:52 (edited 26 Oct 2021)NeurIPS 2021 PosterReaders: Everyone
  • Keywords: Markov chains, prediction, redundancy, spectral gap, mixing time, Kullback Leibler risk
  • TL;DR: We study a prediction problem on Markov chains with finite state space and obtain optimal minimax rates.
  • Abstract: We study the following learning problem with dependent data: Given a trajectory of length $n$ from a stationary Markov chain with $k$ states, the goal is to predict the distribution of the next state. For $3 \leq k \leq O(\sqrt{n})$, the optimal prediction risk in the Kullback-Leibler divergence is shown to be $\Theta(\frac{k^2}{n}\log \frac{n}{k^2})$, in contrast to the optimal rate of $\Theta(\frac{\log \log n}{n})$ for $k=2$ previously shown in Falahatgar et al in 2016. These nonparametric rates can be attributed to the memory in the data, as the spectral gap of the Markov chain can be arbitrarily small. To quantify the memory effect, we study irreducible reversible chains with a prescribed spectral gap. In addition to characterizing the optimal prediction risk for two states, we show that, as long as the spectral gap is not excessively small, the prediction risk in the Markov model is $O(\frac{k^2}{n})$, which coincides with that of an iid model with the same number of parameters.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
11 Replies

Loading