Keywords: transformers, LLM, quantization, quantization-aware training, QAT, low-rank adaptation, PEFT, memory efficiency, inference efficiency
TL;DR: We propose a lightweight memory- and inference-efficient quantization-aware training (QAT) algorithm for LLMs.
Abstract: In this paper we propose LR-QAT – a lightweight and memory-efficient QAT algorithm for LLMs. LR-QAT employs several components to save memory without sacrificing performance: (a) low-rank quantization-aware reparameterization; (b) downcasting operation using fixed-point or double-packing and (c) checkpointing. Unlike most related work, our method (i) is inference-efficient, leading to no additional overhead compared to traditional PTQ; (ii) can be seen as a general extended pre-training framework, meaning that the resulting model can still be utilized for any downstream task afterwards; (iii) is orthogonal to most of recent PTQ methods and thus can be seamlessly combined with them. We apply LR-QAT to the LLaMA-1/2/3 and Mistral model families and validate its effectiveness on several downstream tasks. Our method outperforms most of recent LLM quantization approaches and reaches the same model performance as full-model QAT at the fraction of its memory usage. Specifically, we can train a 7B LLM on a single consumer grade GPU with 24GB memory.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10349
Loading