Use of Ant Colony Optimization for Finding Neighborhoods in Image Non-stationary Markov Random Field Classification

Published: 01 Jan 2007, Last Modified: 05 Mar 2025PReMI 2007EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: In global classifications using Markov Random Field (MRF) modeling, the neighborhood form is generally considered as independent of its location in the image. Such an approach may lead to classification errors for pixels located at the segment borders. The solution proposed here consists in relaxing the assumption of fixed-form neighborhood. Here we propose to use the Ant Colony Optimization (ACO) and to exploit its ability of self-organization. Modeling upon the behavior of social insects for computing strategies, the ACO ants collect information through the image, from one pixel to the others. The choice of the path is a function of the pixel label, favoring paths within a same image segment. We show that this corresponds to an automatic adaptation of the neighborhood to the segment form. Performance of this new approach is illustrated on a simulated image and on actual remote sensing images SPOT4/HRV.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview