Generative Skill Chaining: Long-Horizon Skill Planning with Diffusion Models

Published: 23 Oct 2023, Last Modified: 23 Oct 2023CoRL23-WS-LEAP OralEveryoneRevisionsBibTeX
Keywords: Task and Motion Planning, Diffusion Models, Manipulation Planning
TL;DR: We introduce Generative Skill Chaining, a probabilistic framework that learns skill-centric diffusion models and composes their learned distributions to generate long-horizon plans for unseen task skeletons during inference.
Abstract: Long-horizon tasks, usually characterized by complex subtask dependencies, present a significant challenge in manipulation planning. Skill chaining is a practical approach to solving unseen tasks by combining learned skill priors. However, such methods are myopic if sequenced greedily and face scalability issues with search-based planning strategy. To address these challenges, we introduce Generative Skill Chaining (GSC), a probabilistic framework that learns skill-centric diffusion models and composes their learned distributions to generate long-horizon plans during inference. GSC samples from all skill models in parallel to efficiently solve unseen tasks while enforcing geometric constraints. We evaluate the method on various long-horizon tasks and demonstrate its capability in reasoning about action dependencies, constraint handling, and generalization, along with its ability to replan in the face of perturbations. We show results in simulation and on real robot to validate the efficiency and scalability of GSC, highlighting its potential for advancing long-horizon task planning.
Submission Number: 1
Loading