Linear Scalarization for Byzantine-Robust Learning on non-IID dataDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: Byzantine SGD, Distributed Deep Learning, Non-IID
TL;DR: An enhancing method for current Byzantine defenses when data between clients is unbalanced.
Abstract: In this work we study the problem of Byzantine-robust learning when data among clients is heterogeneous. We focus on poisoning attacks targeting the convergence of SGD. Although this problem has received great attention; the main Byzantine defenses rely on the IID assumption causing them to fail when data distribution is non-IID even with no attack. We propose the use of Linear Scalarization (LS) as an enhancing method to enable current defenses to circumvent Byzantine attacks in the non-IID setting. The LS method is based on the incorporation of a trade-off vector that penalizes the suspected malicious clients. Empirical analysis corroborates that the proposed LS variants are viable in the IID setting. For mild to strong non-IID data splits, LS is either comparable or outperforming current approaches under state-of-the-art Byzantine attack scenarios.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Social Aspects of Machine Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)
9 Replies

Loading