Probabilistic Forecasting of Radiation Exposure for Spaceflight

NeurIPS 2024 Workshop BDU Submission81 Authors

05 Sept 2024 (modified: 10 Oct 2024)Submitted to NeurIPS BDU Workshop 2024EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Space radiation, Timeseries forecasting, Solar Dynamics Observatory, Bayesian deep learning, Monte Carlo dropout, multi-modal learning
TL;DR: Forecasting radiation exposure for human spaceflight with solar imagery using Bayesian deep learning
Abstract: Extended human presence beyond low-Earth orbit (BLEO) during missions to the Moon and Mars will pose significant challenges in the near future. A primary health risk associated with these missions is radiation exposure, primarily from galatic cosmic rays (GCRs) and solar proton events (SPEs). While GCRs present a more consistent, albeit modulated threat, SPEs are harder to predict and can deliver acute doses over short periods. Currently NASA utilizes analytical tools for monitoring the space radiation environment in order to make decisions of immediate action to shelter astronauts. However this reactive approach could be significantly enhanced by predictive models that can forecast radiation exposure in advance, ideally hours ahead of major events, while providing estimates of prediction uncertainty to improve decision-making. In this work we present a machine learning approach for forecasting radiation exposure in BLEO using multimodal time-series data including direct solar imagery from Solar Dynamics Observatory, X-ray flux measurements from GOES missions, and radiation dose measurements from the BioSentinel satellite that was launched as part of Artemis~1 mission. To our knowledge, this is the first time full-disk solar imagery has been used to forecast radiation exposure. We demonstrate that our model can predict the onset of increased radiation due to an SPE event, as well as the radiation decay profile after an event has occurred.
Submission Number: 81
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview