Effective Data Augmentation With Diffusion ModelsDownload PDF

Published: 04 Mar 2023, Last Modified: 17 Nov 2024ME-FoMo 2023 SpotlightReaders: Everyone
Keywords: Deep Learning, Few-Shot, Data Augmentation, Diffusion Models
Abstract: Data augmentation is one of the most prevalent tools in deep learning, underpinning many recent advances, including those from classification, generative models, and representation learning. The standard approach to data augmentation combines simple transformations like rotations and flips to generate new images from existing ones. However, these new images lack diversity along key semantic axes present in the data. Consider the task of recognizing different animals. Current augmentations fail to produce diversity in task-relevant high-level semantic attributes like the species of the animal. We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models. Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples. We evaluate our approach on image classification tasks in a few-shot setting, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/effective-data-augmentation-with-diffusion/code)
0 Replies

Loading