Distribution Simulation Under Local Differential PrivacyDownload PDFOpen Website

2022 (modified: 25 Apr 2023)CWIT 2022Readers: Everyone
Abstract: We investigate the problem of distribution simu-lation under local differential privacy: Alice and Bob observe sequences <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$X^{n}$</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$Y^{n}$</tex> respectively, where <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$Y^{n}$</tex> is generated by a non-interactive <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\varepsilon$</tex> -Iocally differentially private (LDP) mechanism from <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$X^{n}$</tex> . The goal is for Alice and Bob to output <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$U$</tex> and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$V$</tex> from a joint distribution that is close in total variation distance to a target distribution <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$P_{UV}$</tex> . As the main result, we show that such task is impossible if the hynercontractivity coefficient of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$P_{UV}$</tex> is strictly bigger than <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\left(\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}\right)^{2}$</tex> . The proof of this result also leads to a new operational interpretation of LDP mechanisms: if <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$Y$</tex> is an output of an <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\varepsilon$</tex> -LDP mechanism with input <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$X$</tex> , then the probability of correctly guessing <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$f(X)$</tex> given <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$Y$</tex> is bigger than the probability of blind guessing only by <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\frac{e^{\varepsilon}-1}{e^{\varepsilon}+1}$</tex> , for any deterministic finitely-supported function <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$f$</tex> • If <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$f(X)$</tex> is continuous, then a similar result holds for the minimum mean-squared error in estimating <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$f(X)$</tex> given <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$Y$</tex> .
0 Replies

Loading