Variational Quantum Linear Solver enhanced Quantum Support Vector machine

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Supervised learning, Quantum support vector machine, Variational quantum linear solver, Binary classification
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We proposed a hybride classical quantum algorithm - VQLS enhanced QSVM.
Abstract: Quantum Support Vector Machines (QSVM) play a vital role in using quantum resources for supervised machine learning tasks, such as classification. However, current methods are strongly limited in terms of scalability on Noisy Intermediate Scale Quantum (NISQ) devices. In this work, we propose a novel approach called the Variational Quantum Linear Solver (VQLS) enhanced QSVM. This is built upon our idea of utilizing the variational quantum linear solver to solve system of linear equations of a Least Squares-SVM on a NISQ device. The implementation of our approach is evaluated by an extensive series of numerical experiments with the Iris dataset, which consists of three distinct iris plant species. Based on this, we explore the effectiveness of our algorithm by constructing a classifier capable of classification in a feature space ranging from one to seven dimensions. Furthermore, we exploit both classical and quantum computing for various subroutines of our algorithm, and effectively mitigate challenges associated with the implementation. These include significant improvement in the trainability of the variational ansatz and notable reductions in run-time for cost calculations. Based on the numerical experiments, our approach exhibits the capability of identifying a separating hyperplane in an 8-dimensional feature space. Moreover, it consistently demonstrated strong performance across various instances with the same dataset.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3792
Loading