SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis

Published: 16 Jan 2024, Last Modified: 11 Feb 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Image Synthesis, Diffusion, Generative AI
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: We present Stable Diffusion XL (SDXL), a latent diffusion model for text-to-image synthesis. Compared to previous versions of Stable Diffusion, SDXL leverages a three times larger UNet backbone, achieved by significantly increasing the number of attention blocks and including a second text encoder. Further, we design multiple novel conditioning schemes and train SDXL on multiple aspect ratios. To ensure highest quality results, we also introduce a refinement model which is used to improve the visual fidelity of samples generated by SDXL using a post-hoc image-to-image technique. We demonstrate that SDXL improves dramatically over previous versions of Stable Diffusion and achieves results competitive with those of black-box state-of-the-art image generators such as Midjourney.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3626
Loading