Hybrid Spatial Representations for Species Distribution Modeling

21 Sept 2024 (modified: 13 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Neural Implicit Representations, Explicit Representations, Multiresolution Hashgrids, Geographic Embedding, AI for Science
Abstract: We address an important problem in ecology called Species Distribution Modeling (SDM), whose goal is to predict whether a species exists at a certain position on Earth. In particular, we tackle a challenging version of this task, where we learn from presence-only data in a community-sourced dataset, model a large number of species simultaneously, and do not use any additional environmental information. Previous work has used neural implicit representations to construct models that achieve promising results. However, implicit representations often generate predictions of limited spatial precision. We attribute this limitation to their inherently global formulation and inability to effectively capture local feature variations. This issue is especially pronounced with presence-only data and a large number of species. To address this, we propose a hybrid embedding scheme that combines both implicit and explicit embeddings. Specifically, the explicit embedding is implemented with a multiresolution hashgrid, enabling our models to better capture local information. Experiments demonstrate that our results exceed other works by a large margin on various standard benchmarks, and that the hybrid representation is better than both purely implicit and explicit ones. Qualitative visualizations and comprehensive ablation studies reveal that our hybrid representation successfully addresses the two main challenges. Our code is open-sourced at https://anonymous.4open.science/r/HSR-SDM-7360.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2421
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview