Reward-Based Learning of a Memory-Required Task Based on the Internal Dynamics of a Chaotic Neural Network
Abstract: We have expected that dynamic higher functions such as “thinking” emerge through the growth from exploration in the framework of reinforcement learning (RL) using a chaotic Neural Network (NN). In this frame, the chaotic internal dynamics is used for exploration and that eliminates the necessity of giving external exploration noises. A special RL method for this framework has been proposed in which “traces” were introduced. On the other hand, reservoir computing has shown its excellent ability in learning dynamic patterns. Hoerzer et al. showed that the learning can be done by giving rewards and exploration noises instead of explicit teacher signals. In this paper, aiming to introduce the learning ability into our new RL framework, it was shown that the memory-required task in the work of Hoerzer et al. could be learned without giving exploration noises by utilizing the chaotic internal dynamics while the exploration level was adjusted flexibly and autonomously. The task could be learned also using “traces”, but still with problems.
Loading