Minimum width for universal approximation using ReLU networks on compact domain

Published: 16 Jan 2024, Last Modified: 05 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: universal approximation, neural networks
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: It has been shown that deep neural networks of a large enough width are universal approximators but they are not if the width is too small. There were several attempts to characterize the minimum width $w_{\min}$ enabling the universal approximation property; however, only a few of them found the exact values. In this work, we show that the minimum width for $L^p$ approximation of $L^p$ functions from $[0,1]^{d_x}$ to $\mathbb R^{d_y}$ is exactly $\max\\{d_x,d_y,2\\}$ if an activation function is ReLU-Like (e.g., ReLU, GELU, Softplus). Compared to the known result for ReLU networks, $w_{\min}=\max\\{d_x+1,d_y\\}$ when the domain is ${\mathbb R^{d_x}}$, our result first shows that approximation on a compact domain requires smaller width than on ${\mathbb R^{d_x}}$. We next prove a lower bound on $w_{\min}$ for uniform approximation using general activation functions including ReLU: $w_{\min}\ge d_y+1$ if $d_x<d_y\le2d_x$. Together with our first result, this shows a dichotomy between $L^p$ and uniform approximations for general activation functions and input/output dimensions.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning theory
Submission Number: 3196
Loading