Keywords: Large Language Models, Molecular Science, Multi-modal Learning
TL;DR: We present Omni-Mol, a multitask molecular model that can solve any-to-any modality tasks
Abstract: In the molecular domain, numerous studies have explored the use of multimodal large language models (LLMs) to construct a general-purpose, multi-task molecular model. However, these efforts are still far from achieving a truly universal molecular model. We identify three key challenges in this endeavor: (1) Existing molecular task datasets are typically small in scale and lack comprehensive domain coverage. (2) Tasks from different molecular subfields are difficult to effectively learn jointly through LLMs due to significant distributional shifts and competition among tasks, which introduces instability in the learning process. (3) Both inter-task and intra-task molecular representations demand different intrinsic dimensions in the language space, making it challenging to balance between redundancy and insufficiency in language model representations. To address these challenges, we innovatively categorize existing small-molecule tasks into four types: Mol2Mol, Mol2Text, Mol2Num, and Text2Mol. We then collect a dataset encompassing over 16 tasks with more than 1.4 million samples, making it the largest molecular instruction-tuning dataset to date. Leveraging the extensive pretraining of LLMs on existing chemical literature, we propose a novel multimodal LLM framework, named **Omni-Mol**, which unifies all small-molecule tasks and supports both molecular generation and understanding. The core of Omni-Mol is our proposed MoGE, which dynamically adapts to the intrinsic rank of different tasks. This mixture-of-experts architecture enhances the model's ability to handle diverse tasks and modalities effectively. Our model achieves unified instruction tuning across 16 tasks and attains state-of-the-art performance on 13 of them. Extensive experiments further demonstrate the scalability and versatility of Omni-Mol.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 1411
Loading