Keywords: Video Object Detection, Video Laryngoscopy, YOLO, SAM2;
Abstract: Temporal stability in glottic opening localization remains challenging due to the complementary weaknesses of single-frame detectors and foundation-model trackers: the former lacks temporal context, while the latter suffers from memory drift. Specifically, in video laryngoscopy, rapid tissue deformation, occlusions, and visual ambiguities in emergency settings require a robust, temporally aware solution that can prevent progressive tracking errors. We propose Closed-Loop Memory Correction (CL-MC), a detector-in-the-loop framework that supervises SAM2 through confidence-aligned state decisions and active memory rectification. High-confidence detections trigger semantic resets that overwrite corrupted tracker memory, enabling fully training-free, drift-free tracking in complex endoscopic scenes. On emergency intubation videos, CL-MC achieves state-of-the-art performance, significantly reducing drift and missing rate compared with the SAM2 variants and open loop based methods. Our results establish memory correction as a crucial component for reliable clinical video tracking.
Primary Subject Area: Detection and Diagnosis
Secondary Subject Area: Application: Endoscopy
Registration Requirement: Yes
Visa & Travel: Yes
Read CFP & Author Instructions: Yes
Originality Policy: Yes
Single-blind & Not Under Review Elsewhere: Yes
LLM Policy: Yes
Submission Number: 352
Loading