Abstract: In this paper, we address clustering problems in scenarios where accurate direct access to the full dataset is impractical or impossible. Instead, we leverage oracle-based methods, which are particularly valuable in real-world applications where the data may be noisy, restricted due to privacy concerns or sheer volume. We utilize two oracles, the quadruplet and the distance oracle. The quadruplet oracle is a weaker oracle that only approximately compares the distances of two pairs of vertices. In practice, these oracles can be implemented using crowdsourcing or training classifiers or other predictive models. On the other hand, the distance oracle returns exactly the distance of two vertices, so it is a stronger and more expensive oracle to implement. We consider two noise models for the quadruplet oracle. In the adversarial noise model, if two pairs have similar distances, the response is chosen by an adversary. In the probabilistic noise model, the pair with the smaller distance is returned with a constant probability. We consider a set V of n vertices in a metric space that supports the quadruplet and the distance oracle. For each of the k-center, k-median, and k-means clustering problem on V, we design constant approximation algorithms that perform roughly O(nk) calls to the quadruplet oracle and O(k^2) calls to the distance oracle in both noise models. When the dataset has low intrinsic dimension, we significantly improve the approximation factors of our algorithms by performing a few additional calls to the distance oracle. We also show that for k-median and k-means clustering there is no hope to return any sublinear approximation using only the quadruplet oracle. Finally, we give constant approximation algorithms for estimating the clustering cost induced by any set of k vertices, performing roughly O(nk) calls to the quadruplet oracle and O(k^2) calls to the distance oracle.
Loading