Discouraging Posterior Collapse in Hierarchical Variational Autoencoders Using Context

23 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: VAE, posterior collapse, generative models
Abstract: Hierarchical Variational Autoencoders (VAEs) are among the most popular likelihood-based generative models. There is a consensus that the top-down hierarchical VAEs allow effective learning of deep latent structures and avoid problems like posterior collapse. Here, we show that this is not necessarily the case, and the problem of collapsing posteriors remains. To discourage this issue, we propose a deep hierarchical VAE with a context on top. Specifically, we use a Discrete Cosine Transform to obtain the last latent variable. In a series of experiments, we observe that the proposed modification allows us to achieve better utilization of the latent space and does not harm the model's generative abilities.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7787
Loading