Federated Residual Low-Rank Adaption of Large Language Models

Published: 22 Jan 2025, Last Modified: 01 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Languagel model, Federated Learning, Parameter-Efficient Fine-Tuning
Abstract: Low-Rank Adaptation (LoRA) presents an effective solution for federated fine-tuning of Large Language Models (LLMs), as it substantially reduces communication overhead. However, a straightforward combination of FedAvg and LoRA results in suboptimal performance, especially under data heterogeneity. We noted this stems from both intrinsic (i.e., constrained parameter space) and extrinsic (i.e., client drift) limitations, which hinder it effectively learn global knowledge. In this work, we proposed a novel Federated Residual Low-Rank Adaption method, namely FRLoRA, to tackle above two limitations. It directly sums the weight of the global model parameters with a residual low-rank matrix product (\ie, weight change) during the global update step, and synchronizes this update for all local models. By this, FRLoRA performs global updates in a higher-rank parameter space, enabling a better representation of complex knowledge structure. Furthermore, FRLoRA reinitializes the local low-rank matrices with the principal singular values and vectors of the pre-trained weights in each round, to calibrate their inconsistent convergence, thereby mitigating client drift. Our extensive experiments demonstrate that FRLoRA consistently outperforms various state-of-the-art FL methods across nine different benchmarks in natural language understanding and generation under different FL scenarios.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2765
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview