Abstract: Natural disasters can have devastating consequences for communities, causing loss of life and significant economic damage. To mitigate these impacts, it is crucial to quickly and accurately identify situational awareness and actionable information useful for disaster relief and response organizations. In this paper, we study the use of advanced transformer and contrastive learning models for disaster image classification in a humanitarian context, with focus on state-of-the-art pre-trained vision transformers such as ViT, CSWin and a state-of-the-art pre-trained contrastive learning model, CLIP. We evaluate the performance of these models across various disaster scenarios, including in-domain and cross-domain settings, as well as few-shot learning and zero-shot learning settings. Our results show that the CLIP model outperforms the two transformer models (ViT and CSWin) and also ConvNeXts, a competitive CNN-based model resembling transformers, in all the settings. By improving the performance of disaster image classification, our work can contribute to the goal of reducing the number of deaths and economic losses caused by disasters, as well as helping to decrease the number of people affected by these events.
Loading