Abstract: Machine Translation (MT) models are well-known to suffer from gender bias, especially for gender beyond a binary conception. Due to the multiplicity of language-specific strategies for gender representation beyond the binary, debiasing MT is extremely challenging. As an alternative, we propose a case study on gender-fair post-editing. In this study, six professional translators each post-edited three English to German machine translations. For each translation, participants were instructed to use a different gender-fair language strategy, that is, gender-neutral rewording, gender-inclusive characters, and a neosystem. The focus of this study is not on translation quality but rather on the ease of integrating gender-fair language into the post-editing process. Findings from non-participant observation and interviews show clear differences in temporal and cognitive effort between participants and strategy as well as in the success of using gender-fair language.
Loading