Optimal Spatial Deconvolution and Message Reconstruction from a Large Generative Model of Models

Published: 01 Jan 2023, Last Modified: 12 May 2025CoRR 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: We present an agnostic signal reconstruction method for zero-knowledge one-way communication channels in which a receiver aims to interpret a message sent by an unknown source about which no prior knowledge is available and to which no return message can be sent. Our reconstruction method is agnostic vis-\`a-vis the arbitrarily chosen encoding-decoding scheme and other observer-dependent characteristics, such as the arbitrarily chosen computational model, probability distributions, or underlying mathematical theory. We investigate how non-random messages encode information about their intended physical properties, such as dimension and length scales of the space in which a signal or message may have been originally encoded, embedded, or generated. We focus on image data as a first illustration of the capabilities of the new method. We argue that our results have applications to life and technosignature detection, and to coding theory in general.
Loading