DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with GFlowNets

Published: 21 Sept 2023, Last Modified: 22 Dec 2023NeurIPS 2023 posterEveryoneRevisionsBibTeX
Keywords: Bayesian Structure Learning, Generative Flow Networks, Single-cell, Dynamical Systems
TL;DR: A GFlowNet approach for Bayesian dynamic structure learning of gene regulatory networks.
Abstract: One of the grand challenges of cell biology is inferring the gene regulatory network (GRN) which describes interactions between genes and their products that control gene expression and cellular function. We can treat this as a causal discovery problem but with two non-standard challenges: (1) regulatory networks are inherently cyclic so we should not model a GRN as a directed acyclic graph (DAG), and (2) observations have significant measurement noise so for typical sample sizes, there will always be a large equivalence class of graphs that are likely given the data, and we want methods that capture this uncertainty. Existing methods either focus on challenge (1), identifying cyclic structure from dynamics, or on challenge (2) learning complex Bayesian posteriors over directed acyclic graphs, but not both. In this paper we leverage the fact that it is possible to estimate the ``velocity'' of the expression of a gene with RNA velocity techniques to develop an approach that addresses both challenges. Because we have access to velocity information, we can treat the Bayesian structure learning problem as a problem of sparse identification of a dynamical system, capturing cyclic feedback loops through time. We leverage Generative Flow Networks (GFlowNets) to estimate the posterior distribution over the combinatorial space of possible sparse dependencies. Our results indicate that our method learns posteriors that better encapsulate the distributions of cyclic structures compared to counterpart state-of-the-art Bayesian structure learning approaches.
Supplementary Material: zip
Submission Number: 9441