Keywords: neural bandits, contextual bandits, gaussian process, neural tangent kernel, neural kernel
TL;DR: Neural kernel bandits achieve better performance than neural-linear on complex UCI datasets. Impact of NK distributions on exploration varies with task complexity and need to explore.
Abstract: Neural bandits have been shown to provide an efficient solution to practical sequential decision tasks that have nonlinear reward functions. The main contributor to that success is approximate Bayesian inference, which enables neural network (NN) training with uncertainty estimates. However, Bayesian NNs often suffer from a prohibitive computational overhead or operate on a subset of parameters. Alternatively, certain classes of infinite neural networks were shown to directly correspond to Gausian processes (GP) with neural kernels (NK). NK-GPs provide accurate uncertainty estimates and can be trained faster than most Bayesian NNs. We propose to guide common bandit policies with NK distributions and show that NK bandits achieve state-of-the-art performance on nonlinear structured data. Moreover, we propose a framework for measuring independently the ability of a bandit algorithm to learn representations and explore, and use it to analyze the impact of NK distributions w.r.t. those two aspects. We consider policies based on a GP and a Student's t-process (TP). Furthermore, we study practical considerations, such as training frequency and model partitioning. We believe our work will help better understand the impact of utilizing NKs in applied settings.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Probabilistic Methods (eg, variational inference, causal inference, Gaussian processes)
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/arxiv:2111.03543/code)
7 Replies
Loading