Keywords: Neural rendering, novel view synthesis, 3D Gaussian Splatting, feed-forward models, vision transformers
Abstract: Large transformer models are proving to be a powerful tool for 3D vision and novel view synthesis. However, the standard Transformer's well-known quadratic complexity makes it difficult to scale these methods to large scenes. To address this challenge, we propose the Local View Transformer (LVT), a large-scale scene reconstruction and novel view synthesis architecture that circumvents the need for the quadratic attention operation. Motivated by the insight that spatially nearby views provide a more useful signal about the local scene composition than distant views, our model processes all information in a local neighborhood around each view. To attend to tokens in nearby views, we leverage a novel positional encoding that conditions on the relative geometric transformation between the query and nearby views. We decode the output of our model into a 3D Gaussian Splat scene representation that includes both color and opacity view-dependence. Taken together, the Local View Transformer enables reconstruction of arbitrarily large, high-resolution scenes in a single forward pass.
Submission Number: 136
Loading