Optimal Sub-Gaussian Mean Estimation in $\mathbb{R}$Download PDFOpen Website

2021 (modified: 13 May 2022)FOCS 2021Readers: Everyone
Abstract: We settle the fundamental problem of estimating the mean of a real-valued distribution in the high probability regime, under the minimal (and essentially necessary) assumption that the distribution has finite but unknown variance: we propose an estimator with convergence tight up to a <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$1 +o(1)$</tex> factor. Crucially, in contrast to prior works, our estimator does not require prior knowledge of the variance, and works across the entire gamut of distributions with finite variance, including those without any higher moments. Parameterized by the sample size <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$n$</tex> , the failure probability <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\delta$</tex> , and the variance <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\sigma^{2}$</tex> , our estimator has additive accuracy within <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\sigma\cdot(1+o(1))\sqrt{\frac{2\log\frac{1}{\delta}}{n}}$</tex> , which is optimal up to the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$1+o(1)$</tex> term. This asymptotically matches the convergence of the sample mean for the Gaussian distribution with the same variance. Our estimator construction and analysis gives a framework generalizable to other problems, tightly analyzing a sum of dependent random variables by viewing the sum implicitly as a 2-parameter <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">$\psi$</tex> -estimator, and constructing bounds using mathematical programming and duality techniques.
0 Replies

Loading