Elaboration Tolerant Representation of Markov Decision Process via Decision-Theoretic Extension of Probabilistic Action Language +Download PDFOpen Website

2021 (modified: 23 May 2022)Theory Pract. Log. Program. 2021Readers: Everyone
Abstract: We extend probabilistic action language $p{\cal BC}$+ with the notion of utility in decision theory. The semantics of the extended $p{\cal BC}$+ can be defined as a shorthand notation for a decision-theoretic extension of the probabilistic answer set programming language LPMLN. Alternatively, the semantics of $p{\cal BC}$+ can also be defined in terms of Markov decision process (MDP), which in turn allows for representing MDP in a succinct and elaboration tolerant way as well as leveraging an MDP solver to compute a $p{\cal BC}$+ action description. The idea led to the design of the system pbcplus2mdp, which can find an optimal policy of a $p{\cal BC}$+ action description using an MDP solver.
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview