DualNet: Continual Learning, Fast and SlowDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: Continual learning, fast and slow learning
Abstract: According to Complementary Learning Systems (CLS) theory~\cite{mcclelland1995there} in neuroscience, humans do effective \emph{continual learning} through two complementary systems: a fast learning system centered on the hippocampus for rapid learning of the specifics and individual experiences, and a slow learning system located in the neocortex for the gradual acquisition of structured knowledge about the environment. Motivated by this theory, we propose a novel continual learning framework named ``DualNet", which comprises a fast learning system for supervised learning of pattern-separated representation from specific tasks and a slow learning system for unsupervised representation learning of task-agnostic general representation via a Self-Supervised Learning (SSL) technique. The two fast and slow learning systems are complementary and work seamlessly in a holistic continual learning framework. Our extensive experiments on two challenging continual learning benchmarks of CORE50 and miniImageNet show that DualNet outperforms state-of-the-art continual learning methods by a large margin. We further conduct ablation studies of different SSL objectives to validate DualNet's efficacy, robustness, and scalability. Code is publicly available at \url{https://github.com/phquang/DualNet}.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
TL;DR: A novel continual learning paradigm of fast and slow learning.
Supplementary Material: pdf
Code: https://github.com/phquang/DualNet
16 Replies

Loading