everyone
since 13 Oct 2023">EveryoneRevisionsBibTeX
Pseudo-labeling is a popular semi-supervised learning technique to leverage unlabeled data when labeled samples are scarce. The generation and selection of pseudo-labels heavily rely on labeled data. Existing approaches implicitly assume that the labeled data is gold standard and “perfect”. However, this can be violated in reality with issues such as mislabeling or ambiguity. We address this overlooked aspect and show the importance of investigating labeled data quality to improve any pseudo-labeling method. Specifically, we introduce a novel data characterization and selection framework called DIPS to extend pseudo-labeling. We select useful labeled and pseudo-labeled samples via analysis of learning dynamics. We empirically demonstrate that DIPS improves the performance of various pseudo-labeling methods on real-world datasets across multiple modalities, including tabular and images, with minimal computational overhead. Additionally, DIPS improves data efficiency and reduces the performance distinctions between different pseudo-labelers. Overall, we highlight the significant benefits of a data-centric rethinking of pseudo-labeling in real-world settings.