Classifying Ransomware Using Machine Learning Algorithms

Published: 01 Jan 2019, Last Modified: 01 Nov 2024IDEAL (2) 2019EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Ransomware is a continuing threat and has resulted in the battle between the development and detection of new techniques. Detection and mitigation systems have been developed and are in wide-scale use; however, their reactive nature has resulted in a continuing evolution and updating process. This is largely because detection mechanisms can often be circumvented by introducing changes in the malicious code and its behaviour. In this paper, we demonstrate a classification technique of integrating both static and dynamic features to increase the accuracy of detection and classification of ransomware. We train supervised machine learning algorithms using a test set and use a confusion matrix to observe accuracy, enabling a systematic comparison of each algorithm. In this work, supervised algorithms such as the Naïve Bayes algorithm resulted in an accuracy of 96% with the test set result, SVM 99.5%, random forest 99.5%, and 96%. We also use Youden’s index to determine sensitivity and specificity.
Loading