Statistical Efficiency of Distributional Temporal Difference Learning

Published: 25 Sept 2024, Last Modified: 06 Nov 2024NeurIPS 2024 oralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Distributional Reinforcement Learning, Distributional Temporal Difference Learning, Sample Complexity
Abstract: Distributional reinforcement learning (DRL) has achieved empirical success in various domains. One of the core tasks in the field of DRL is distributional policy evaluation, which involves estimating the return distribution $\eta^\pi$ for a given policy $\pi$. The distributional temporal difference learning has been accordingly proposed, which is an extension of the temporal difference learning (TD) in the classic RL area. In the tabular case, Rowland et al. [2018] and Rowland et al. [2023] proved the asymptotic convergence of two instances of distributional TD, namely categorical temporal difference learning (CTD) and quantile temporal difference learning (QTD), respectively. In this paper, we go a step further and analyze the finite-sample performance of distributional TD. To facilitate theoretical analysis, we propose a non-parametric distributional TD learning (NTD). For a $\gamma$-discounted infinite-horizon tabular Markov decision process, we show that for NTD we need $\widetilde O\left(\frac{1}{\varepsilon^{2p}(1-\gamma)^{2p+1}}\right)$ iterations to achieve an $\varepsilon$-optimal estimator with high probability, when the estimation error is measured by the $p$-Wasserstein distance. This sample complexity bound is minimax optimal (up to logarithmic factors) in the case of the $1$-Wasserstein distance. To achieve this, we establish a novel Freedman's inequality in Hilbert spaces, which would be of independent interest. In addition, we revisit CTD, showing that the same non-asymptotic convergence bounds hold for CTD in the case of the $p$-Wasserstein distance.
Primary Area: Reinforcement learning
Submission Number: 5847
Loading