Abstract: Link prediction has become a significant research problem in deep learning, and the graph-based autoencoder model is one of the most important methods to solve it. The existing graph-based autoencoder models only learn a single set of distributions, which cannot accurately represent the mixed distribution in real graph data. Meanwhile, existing learning models have been greatly restricted when the graph data has insufficient attribute information and inaccurate topology information. In this paper, we propose a novel graph embedding framework, termed multi-scale variational graph autoencoder (MSVGAE), which learns multiple sets of low-dimensional vectors of different dimensions through the graph encoder to represent the mixed probability distribution of the original graph data, and performs multiple sampling in each dimension. Furthermore, a self-supervised learning strategy (i.e., graph feature reconstruction auxiliary learning) is introduced to fully use the graph attribute information to help the graph structure learning. Experiment studies on real-world graphs demonstrate that the proposed model achieves state-of-the-art performance compared with other baseline methods in link prediction tasks. Besides, the robustness analysis shows that the proposed MSVGAE method has obvious advantages in the processes of graph data with insufficient attribute information and inaccurate topology information.
0 Replies
Loading