Dynamic Recommendation Based on Graph Diffusion and Ebbinghaus Curve

Published: 01 Jan 2024, Last Modified: 01 Oct 2024IEEE Trans. Comput. Soc. Syst. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Nowadays, many dynamic recommendations still suffer from the insufficiency of finding user online interest evolving patterns because of those complicated interactions. In general, each interaction is usually impacted by multiple underlying reasons, which needs us to open the “box” of each interaction instance instead of simply treating them as a pair-wise link. Besides, different users usually perform differently for their long-term and short-term tastes, leaving traditional sequential models far from personalized. In this article, we propose a novel recommendation model based on Graph Diffusion and Ebbinghaus Curve. Specifically, to explore the underline reasons for different interactions, we explore an underlying sub-graph for each interaction and find important reasoning paths within the sub-graph via a well-designed graph diffusion method. To capture users’ personalized strategies on long-term and short-term tastes, we are inspired by the Ebbinghaus Curve, which can naturally describe users’ memory patterns, and design an effective neural network to process users’ evolving behaviors. We conduct extensive experiments on four real-world datasets and the results further confirm the superiority of our model compared with existing state-of-the-art baselines.
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview