Looking Inward: Language Models Can Learn About Themselves by Introspection

ICLR 2025 Conference Submission8514 Authors

Published: 22 Jan 2025, Last Modified: 22 Jan 2025ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Introspection, Large Language Models, Model awareness, Self-simulation, Generalization, Capability Evaluations, AI safety
TL;DR: Large language models exhibit a form of introspection, enabling them to access privileged information about their own behavior that is not contained in or inferrable from their training data.
Abstract: Humans acquire knowledge by observing the external world, but also by introspection. Introspection gives a person privileged access to their current state of mind (e.g. thoughts and feelings) that are not accessible to external observers. Do LLMs have this introspective capability of privileged access? If they do, this would show that LLMs can acquire knowledge not contained in or inferable from training data. We investigate LLMs predicting properties of their own behavior in hypothetical situations. If a model M1 has this capability, it should outperform a different model M2 in predicting M1's behavior—even if M2 is trained on M1's ground-truth behavior. The idea is that M1 has privileged access to its own behavioral tendencies, and this enables it to predict itself better than M2 (even if M2 is generally stronger). In experiments with GPT-4, GPT-4o, and Llama-3 models, we find that the model M1 outperforms M2 in predicting itself, providing evidence for privileged access. Further experiments and ablations provide additional evidence. Our results show that LLMs can offer reliable self-information independent of external data in certain domains. By demonstrating this, we pave the way for further work on introspection in more practical domains, which would have significant implications for model transparency and explainability. However, while we successfully show introspective capabilities in simple tasks, we are unsuccessful on more complex tasks or those requiring out-of-distribution generalization.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8514
Loading