Abstract: Large Reasoning Models (LRMs) face a distinct safety vulnerability: their internal reasoning chains may generate harmful content even when the final output appears benign. To address this overlooked risk, we first propose a novel attack paradigm, Reasoning-Activated Jailbreak (RAJ) via Concretization, which demonstrates that refining malicious prompts to be more specific can trigger step-by-step logical reasoning that overrides the model's safety protocols. To systematically mitigate this vulnerability, we further develop a scalable framework for constructing high-quality safety alignment datasets. This framework first leverages the RAJ attack to elicit challenging harmful reasoning chains from LRMs, then transforms these high-risk traces into safe, constructive, and educational responses through a tailored Principle-Guided Alignment (PGA) mechanism. Then, we introduce the PGA dataset, a verified alignment dataset containing 3,989 samples using our proposed method. Extensive experiments show that fine-tuning LRMs with PGA dataset significantly enhances model safety, achieving up to a 29.5% improvement in defense success rates across multiple jailbreak benchmarks. Critically, our approach not only defends against sophisticated reasoning-based attacks but also preserves, even enhances, the model's general reasoning capabilities. This work provides a scalable and effective pathway for safety alignment in reasoning-intensive AI systems, addressing the core trade-off between safety and functional performance.
External IDs:dblp:journals/corr/abs-2508-12897
Loading