Temperature Schedules for self-supervised contrastive methods on long-tail dataDownload PDF

Published: 01 Feb 2023, 19:19, Last Modified: 01 Feb 2023, 19:19ICLR 2023 posterReaders: Everyone
Keywords: contrastive learning, long-tail data, self-supervised learning, temperature, analysis
TL;DR: Simple temperature schedules in self-supervised contrastive learning improve representation learning on long-tail distributions
Abstract: Most approaches for self-supervised learning (SSL) are optimised on curated balanced datasets, e.g. ImageNet, despite the fact that natural data usually exhibits long-tail distributions. In this paper, we analyse the behaviour of one of the most popular variants of SSL, i.e. contrastive methods, on imbalanced data. In particular, we investigate the role of the temperature parameter $\tau$ in the contrastive loss, by analysing the loss through the lens of average distance maximisation, and find that a large $\tau$ emphasises group-wise discrimination, whereas a small $\tau$ leads to a higher degree of instance discrimination. While $\tau$ has thus far been treated exclusively as a constant hyperparameter, in this work, we propose to employ a dynamic $\tau$ and show that a simple cosine schedule can yield significant improvements in the learnt representations. Such a schedule results in a constant `task switching' between an emphasis on instance discrimination and group-wise discrimination and thereby ensures that the model learns both group-wise features, as well as instance-specific details. Since frequent classes benefit from the former, while infrequent classes require the latter, we find this method to consistently improve separation between the classes in long-tail data without any additional computational cost.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
16 Replies

Loading