Uncertainty Estimation for 3D Dense Prediction via Cross-Point Embeddings

Published: 01 Jan 2023, Last Modified: 18 Jan 2025IEEE Robotics Autom. Lett. 2023EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Dense prediction tasks are common for 3D point clouds, but the uncertainties inherent in massive points and their embeddings have long been ignored. In this work, we present CUE, a novel uncertainty estimation method for dense prediction tasks in 3D point clouds. Inspired by metric learning, the key idea of CUE is to explore cross-point embeddings upon a conventional 3D dense prediction pipeline. Specifically, CUE involves building a probabilistic embedding model and then enforcing metric alignments of massive points in the embedding space. We also propose CUE+, which enhances CUE by explicitly modeling cross-point dependencies in the covariance matrix. We demonstrate that both CUE and CUE+ are generic and effective for uncertainty estimation in 3D point clouds with two different tasks: (1) in 3D geometric feature learning we for the first time obtain well-calibrated uncertainty, and (2) in semantic segmentation we reduce uncertainty's Expected Calibration Error of the state-of-the-arts by 16.5%. All uncertainties are estimated without compromising predictive performance.
Loading