Keywords: Optical Flow, Contrastvie Learning, Semi-supervised Learning
TL;DR: A semi-supervised framework for optical flow with iterative pseudo labeling and contrastive flow loss to facilitate representation learning with unlabeled data
Abstract: Synthetic datasets are often used to pretrain end-to-end optical flow networks, due to the lack of a large amount of labeled, real scene data. But major drops in accuracy occur when moving from synthetic to real scenes. How do we better transfer the knowledge learned from synthetic to real domains? To this end, we propose CLIP-Flow, a semi-supervised iterative pseudo labeling framework to transfer the pretraining knowledge to the target real domain. We leverage large-scale, unlabeled real data to facilitate transfer learning with the supervision of iteratively updated pseudo ground truth labels, bridging the domain gap between the synthetic and the real. In addition, we propose a contrastive flow loss on reference features and the warped features by pseudo ground truth flows, to further boost the accurate matching and dampen the mismatching due to motion, occlusion, or noisy pseudo labels. We adopt RAFT as the backbone and obtain an F1-all error of 4.11%, i.e., a 19% error reduction from RAFT (5.10%) and ranking 2nd place at submission on KITTI 2015 benchmark. Our framework can also be extended to other models, e.g., CRAFT, reducing the F1-all error from 4.79% to 4.66% on KITTI 2015 benchmark.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
9 Replies
Loading