Keywords: Unlearning evaluation, Multi-hop reasoning
TL;DR: A Dynamic Framework for Evaluating LLM Unlearning
Abstract: Unlearning in Large Language Models (LLMs) aims to enhance safety, mitigate biases, and comply with legal mandates, such as the right to be forgotten. However, existing unlearning methods are brittle: minor query modifications, such as multi-hop reasoning and entity aliasing, can recover supposedly forgotten information. As a result, current evaluation metrics often create an illusion of effectiveness, failing to detect these vulnerabilities due to reliance on static, unstructured benchmarks. We propose a dynamic framework that stress tests unlearning robustness using complex structured queries. Our approach first elicits knowledge from the target model (pre-unlearning) and constructs targeted probes, ranging from simple queries to multi-hop chains, allowing precise control over query difficulty. Our experiments show that the framework: (1) shows comparable coverage to existing benchmarks by automatically generating semantically equivalent Q&A probes, (2) aligns with prior evaluations, and (3) uncovers new unlearning failures missed by other benchmarks, particularly in multi-hop settings. Furthermore, activation analyses show that single-hop queries typically follow dominant computation pathways, which are more likely to be disrupted by unlearning methods. In contrast, multi-hop queries tend to use alternative pathways that often remain intact, explaining the brittleness of unlearning techniques in multi-hop settings. Our framework enables practical and scalable evaluation of unlearning methods without the need for manual construction of forget test sets, enabling easier adoption for real-world applications. We release the pip package and the code at https://sites.google.com/view/unlearningmirage/home.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the COLM Code of Ethics on https://colmweb.org/CoE.html
Author Guide: I certify that this submission complies with the submission instructions as described on https://colmweb.org/AuthorGuide.html
Award Nomination: true
Submission Number: 800
Loading