Parameter Expanded Stochastic Gradient Markov Chain Monte Carlo

ICLR 2025 Conference Submission13380 Authors

28 Sept 2024 (modified: 19 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: SGMCMC, Bayesian Neural Network, Parameter Expansion
Abstract: Bayesian Neural Networks (BNNs) provide a promising framework for modeling predictive uncertainty and enhancing out-of-distribution robustness (OOD) by estimating the posterior distribution of network parameters. Stochastic Gradient Markov Chain Monte Carlo (SGMCMC) is one of the most powerful methods for scalable posterior sampling in BNNs, achieving efficiency by combining stochastic gradient descent with second-order Langevin dynamics. However, SGMCMC often suffers from limited sample diversity in practice, which affects uncertainty estimation and model performance. We propose a simple yet effective approach to enhance sample diversity in SGMCMC without the need for tempering or running multiple chains. Our approach reparameterizes the neural network by decomposing each of its weight matrices into a product of matrices, resulting in a sampling trajectory that better explores the target parameter space. This approach produces a more diverse set of samples, allowing faster mixing within the same computational budget. Notably, our sampler achieves these improvements without increasing the inference cost compared to the standard SGMCMC. Extensive experiments on image classification tasks, including OOD robustness, diversity, loss surface analyses, and a comparative study with Hamiltonian Monte Carlo, demonstrate the superiority of the proposed approach.
Supplementary Material: zip
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13380
Loading