Indiscriminate Poisoning Attacks on Unsupervised Contrastive LearningDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Oct 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: data poisoning, contrastive learning
Abstract: Indiscriminate data poisoning attacks are quite effective against supervised learning. However, not much is known about their impact on unsupervised contrastive learning (CL). This paper is the first to consider indiscriminate poisoning attacks of contrastive learning. We propose Contrastive Poisoning (CP), the first effective such attack on CL. We empirically show that Contrastive Poisoning, not only drastically reduces the performance of CL algorithms, but also attacks supervised learning models, making it the most generalizable indiscriminate poisoning attack. We also show that CL algorithms with a momentum encoder are more robust to indiscriminate poisoning, and propose a new countermeasure based on matrix completion. Code is available at:
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
12 Replies