Primary Area: general machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Federated Learning; Incentive Mechanism; Game Theory
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose an incentive-aware framework for agent participation that considers data heterogeneity to accelerate the convergence process.
Abstract: Federated learning (FL) provides a promising paradigm for facilitating collaboration between multiple clients that jointly learn a global model without directly sharing their local data. However, existing research suffers from two caveats: 1) From the perspective of decentralized agents, voluntary and unselfish participation is often assumed. But self-interested agents may opt out of the system or provide low-quality contributions without proper incentives; 2) From the mechanism designer's perspective, the aggregated models can be unsatisfactory as the existing game-theoretical federated learning approach for data collection ignores the potential heterogeneous effort caused by contributed data.
To alleviate above challenges, we propose an incentive-aware framework for agent participation that considers data heterogeneity to accelerate the convergence process. Specifically, we first introduce the notion of Wasserstein distance to explicitly illustrate the heterogeneous effort and reformulate the existing upper bound of convergence. To induce truthful reporting from agents, we analyze and measure the generalization error gap of any two agents by leveraging the peer prediction mechanism to develop score functions. We further present a two-stage Stackelberg game model that formalizes the process and examines the existence of equilibrium. Extensive experiments on real-world datasets demonstrate the effectiveness of our proposed incentive mechanism.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5124
Loading