Weakly supervised temporal action localization with proxy metric modelingDownload PDFOpen Website

2022 (modified: 02 Nov 2022)Frontiers Comput. Sci. 2022Readers: Everyone
Abstract: Temporal localization is crucial for action video recognition. Since the manual annotations are expensive and time-consuming in videos, temporal localization with weak video-level labels is challenging but indispensable. In this paper, we propose a weakly-supervised temporal action localization approach in untrimmed videos. To settle this issue, we train the model based on the proxies of each action class. The proxies are used to measure the distances between action segments and different original action features. We use a proxy-based metric to cluster the same actions together and separate actions from backgrounds. Compared with state-of-the-art methods, our method achieved competitive results on the THUMOS14 and ActivityNet1.2 datasets.
0 Replies

Loading