FedEAN: Entity-Aware Adversarial Negative Sampling for Federated Knowledge Graph Reasoning

Published: 01 Jan 2024, Last Modified: 22 Aug 2025IEEE Trans. Knowl. Data Eng. 2024EveryoneRevisionsBibTeXCC BY-SA 4.0
Abstract: Federated knowledge graph reasoning (FedKGR) aims to perform reasoning over different clients while protecting data privacy, drawing increasing attention to its high practical value. Previous works primarily focus on data heterogeneity, ignoring challenges from limited data scale and primitive negative sample strategies, i.e., random entity replacement, which yield low-quality negatives and zero loss issues. Meanwhile, generative adversarial networks (GANs) are widely used in different fields to generate high-quality negative samples, but no work has been developed for FedKGR. To this end, we propose a plug-and-play E ntity-aware A dversarial N egative sampling strategy for FedKGR, termed FedEAN. Specifically, we are the first to adopt GANs to generate high-quality negative samples in different clients. It takes the target triplet in each batch as input and outputs high-quality negative samples, which guaranteed by the joint training of the generator and discriminator. Moreover, we design an entity-aware adaptive negative sampling mechanism based on the similarity of entity representations before and after server aggregation, which can persevere the entity global consistency across clients during training. Extensive experiments demonstrate that FedEAN excels with various FedKGR backbones, demonstrating its ability to construct high-quality negative samples and address the zero-loss issue.
Loading