Optimizing network bandwidth slicing identification: NADAM-enhanced CNN and VAE data preprocessing for enhanced interpretability

Md. Fahim Ul Islam, Yang (Jack) Lu, Shahriar Hossain, Md. Golam Rabiul Alam, Nafees Mansoor, Amitabha Chakrabarty

Published: 21 Oct 2025, Last Modified: 06 Nov 2025PLOS OneEveryoneRevisionsCC BY-SA 4.0
Abstract: Communication networks of the future will rely heavily on network slicing (NS), a technology that enables the creation of distinct virtual networks within a shared physical infrastructure. This capability is critical for meeting the diverse quality of service (QoS) requirements of various applications, from ultra-reliable low-latency communications to massive IoT deployments. To achieve efficient network slicing, intelligent algorithms are essential for optimizing network resources and ensuring QoS. Artificial Intelligence (AI) models, particularly deep learning techniques, have emerged as powerful tools for automating and enhancing network slicing processes. These models are increasingly applied in next-generation mobile and wireless networks, including 5G, IoT infrastructure, and software-defined networking (SDN), to allocate resources and manage network slices dynamically. In this paper, we propose an Interpretable Network Bandwidth Slicing Identification (INBSI) system that leverages a modified Convolutional Neural Network (CNN) architecture with Nesterov-accelerated Adaptive Moment Estimation (NADAM) optimization. Additionally, we use a Variational Autoencoder (VAE) for preprocessing initial data, along with reconstructed data for data validity assessment. The model we propose outperforms other alternatives and reaches an accuracy peak of (84%) in the system environment. A range of accuracy was achieved by (k-nearest neighbors algorithm) KNN (76%), Random Forest (69%), BaggingClassifier (70%), and Gaussian Naive Bayes (GaussianNB) (55%). The accuracy of additional methods varies, including Decision Trees, AdaBoost, Deep Neural Forest (DNF), and Multilayer Perceptrons (MLPs). We utilize two eXplainable Artificial Intelligence (XAI) approaches, Shapley Additive Explanations (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), to provide insight into the impact of certain input characteristics on the network slicing process. Our work highlights the potential of AI-driven solutions in network slicing, offering insights for operators to optimize resource allocation and enhance future network management.
Loading