Keywords: deformable image registration, manifold statistics, non- rigid registration, diffeomorphisms, shape population statistics, log- euclidean statistics
TL;DR: The proposed method leverages population-level morphometrics derived from spatial transformations to guide and regularize registration networks, promoting anatomically consistent and plausible deformations.
Abstract: Spatial transformations that capture population-level morphological statistics are critical for medical image analysis. Commonly used smoothness regularizers for image registration fail to integrate population statistics, leading to anatomically inconsistent transformations. Inverse consistency regularizers promote geometric consistency but lack population morphometrics integration. Regularizers that constrain deformation to low-dimensional manifold methods address this. However, they prioritize reconstruction over interpretability and neglect diffeomorphic properties, such as group composition and inverse consistency. We introduce MORPH-LER, a Log-Euclidean regularization framework for population-aware unsupervised image registration. MORPH-LER, learns population morphometrics from spatial transformations to guide and regularize registration networks, ensuring anatomically plausible deformations. It features a bottleneck autoencoder that computes the principal logarithm of deformation fields via iterative square-root predictions. It creates a linearized latent space that respects diffeomorphic properties and enforces inverse consistency. By integrating a registration network with a diffeomorphic autoencoder, MORPH-LER produces smooth, meaningful deformation fields. The framework offers two main contributions: (1) a data-driven regularization strategy that incorporates population-level anatomical statistics to enhance transformation validity and (2) a linearized latent space that enables compact and interpretable deformation fields for efficient population morphometrics analysis. We validate MORPH-LER across two families of deep learning-based registration networks, demonstrating its ability to produce anatomically accurate, computationally efficient, and statistically meaningful transformations on the OASIS-1 brain imaging dataset.
Primary Subject Area: Image Registration
Secondary Subject Area: Unsupervised Learning and Representation Learning
Paper Type: Both
Registration Requirement: Yes
Reproducibility: https://github.com/iyerkrithika21/MORPH_LER
Midl Latex Submission Checklist: Ensure no LaTeX errors during compilation., Created a single midl25_NNN.zip file with midl25_NNN.tex, midl25_NNN.bib, all necessary figures and files., Includes \documentclass{midl}, \jmlryear{2025}, \jmlrworkshop, \jmlrvolume, \editors, and correct \bibliography command., Did not override options of the hyperref package, Did not use the times package., All authors and co-authors are correctly listed with proper spelling and avoid Unicode characters., Author and institution details are de-anonymized where needed. All author names, affiliations, and paper title are correctly spelled and capitalized in the biography section., References must use the .bib file. Did not override the bibliographystyle defined in midl.cls. Did not use \begin{thebibliography} directly to insert references., Tables and figures do not overflow margins; avoid using \scalebox; used \resizebox when needed., Included all necessary figures and removed *unused* files in the zip archive., Removed special formatting, visual annotations, and highlights used during rebuttal., All special characters in the paper and .bib file use LaTeX commands (e.g., \'e for é)., Appendices and supplementary material are included in the same PDF after references., Main paper does not exceed 9 pages; acknowledgements, references, and appendix start on page 10 or later.
Latex Code: zip
Copyright Form: pdf
Submission Number: 223
Loading