Memoization-Aware Bayesian Optimization for AI Pipelines with Unknown Costs

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Bayesian Optimization, Cost-Awareness, Memoization, Multistage Pipeline, Expected Improvement
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose the Expected-Expected Improvement Per Unit-cost (EEIPU) acquisition function, a cost-aware Bayesian approach incorporating memoization for multistage AI pipeline optimization.
Abstract: Bayesian optimization (BO) is an effective approach for optimizing expensive black-box functions via potentially noisy function evaluations. However, few BO techniques address the cost-aware setting, in which different samples impose different costs on the optimizer, particularly when costs are initially unknown. This cost-aware BO setting is of special interest in tuning multi-stage AI pipelines, in which we could apply caching techniques to store and reuse early-stage outputs in favor of optimizing later stages, without incurring the costs of re-running the full pipeline. In this paper, we propose the Expected-Expected Improvement Per Unit Cost (EEIPU), a novel extension to the Expected Improvement (EI) acquisition function that adapts to unknown costs in multi-stage pipelines. EEIPU fits individual Gaussian Process (GP) models for each stage's cost data and manages the different cost regions of the search space, while balancing exploration-exploitation trade-offs. Additionally, EEIPU incorporates early-stage memoization, reducing redundant computations and costs by reusing the results of earlier stages, allowing for more iterations than existing approaches within the specified budget. In the cost-aware setting, EEIPU significantly outperforms comparable methods when tested on both synthetic and real pipelines, returning higher objective function values at lower total execution costs. This offers a significant advancement in cost-aware BO for optimizing multi-stage machine learning pipelines.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3596
Loading