Convergence of Bayesian Bilevel Optimization

Published: 16 Jan 2024, Last Modified: 13 Mar 2024ICLR 2024 spotlightEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Hyperparameter optimization, Bayesian optimization, Convergence rate, Bilevel optimization, Learning theory
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We establish convergence guarantees for a bilevel approach combining SGD and Bayesian optimization to jointly optimize models and hyperparameters.
Abstract: This paper presents the first theoretical guarantee for Bayesian bilevel optimization (BBO) that we term for the prevalent bilevel framework combining Bayesian optimization at the outer level to tune hyperparameters, and the inner-level stochastic gradient descent (SGD) for training the model. We prove sublinear regret bounds suggesting simultaneous convergence of the inner-level model parameters and outer-level hyperparameters to optimal configurations for generalization capability. A pivotal, technical novelty in the proofs is modeling the excess risk of the SGD-trained parameters as evaluation noise during Bayesian optimization. Our theory implies the inner unit horizon, defined as the number of SGD iterations, shapes the convergence behavior of BBO. This suggests practical guidance on configuring the inner unit horizon to enhance training efficiency and model performance.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: learning theory
Submission Number: 2458
Loading