Keywords: Machine Unlearning, Large Language Model
Abstract: Machine unlearning is a promising approach to mitigate undesirable memorization of training data in ML models. However, in this work we show that existing approaches for unlearning in LLMs are surprisingly susceptible to a simple set of benign relearning attacks. With access to only a small and potentially loosely related set of data, we find that we can “jog” the memory of unlearned models to reverse the effects of unlearning. For example, we show that relearning on public medical articles can lead an unlearned LLM to output harmful knowledge about bioweapons, and relearning general wiki information about the book series Harry Potter can force the model to output verbatim memorized text. We formalize this unlearning-relearning pipeline, explore the attack across three popular unlearning benchmarks, and discuss future directions and guidelines that result from our study. Our work indicates that current approximate unlearning methods simply suppress the model outputs and fail to robustly forget target knowledge in the LLMs.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9018
Loading